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ABSTRACT 

Nanometer scale fabrication and experimental investigations into the magnetic 

properties of mesoscopic molecular clusters have specifically addressed the need for 

theoretical models to ascertain thermodynamic properties. Technological applications 

germane to these inquiries potentially include minimum scale ferromagnetic data storage 

and quantum computing. The one-dimensional nearest neighbor Heisenberg spin system 

accurately models the energy exchange of certain planar rings of magnetic ions. Seeking 

the partition function from which a host of thermodynamic quantities may be obtained, this 

thesis contrasts two transfer matrix formulations of a classical Heisenberg ring in a 

magnetic field. Following a discussion of the transfer matrix technique in an Ising model 

and a review of material magnetic characteristics, a Heisenberg Hamiltonian development 

establishes the salient integral eigenvalue equation. The 1975 technique of Blume et al 

turns the integral equation into a matrix eigenvalue equation using Gaussian numerical 

integration. This thesis alternatively proposes an exactly formulated matrix eigenvalue 

equation, deriving the matrix elements by expanding the eigenvectors in a basis of the 

spherical harmonics. Representing the energy coupling of the ring to a magnetic field with 

symmetric or asymmetric transfer operators develops pragmatically distinctive matrix 

elements; the asymmetric yielding a simpler expression. Complete evaluation will require 

follow-on numerical analysis. 
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L THE PURPOSE OF MAGNETIC MODELS 

A.       INTRODUCTION 

In matter, magnetic phenomena both originate from fundamental forces, and serve 

in ever increasing technological applications. Surprisingly however, there is no single 

comprehensive theory that can fully explain or accurately predict the full variety of 

material magnetic manifestations. For example, the entire theoretical edifice of Quantum 

and Statistical Mechanics cannot answer with certainty detailed questions of 

ferromagnetic coupling. It is known that ferro- and antiferromagnetism arise from short 

range interaction energy that forces spins of unpaired electrons into spontaneous 

alignment. [Ref. 1] More fundamentally, permanent magnetic moments are located in 

atoms or molecules and originate from the circling of the electrons around the nuclei 

(orbital moments) and from the spin of the electrons themselves (spin moments). These 

magnetic moments are proportional to angular momentum which is quantized as integral 

or half integral multiples of h, (Planck's constant h + 2n). Particularly in the solid state, 

where electron orbits may be "quenched", the often intractable many body problem of 

"quantized gyroscope coupling", or energy exchanges in crystalline lattice structures has 

motivated a variety of models to explain experiment. [Ref. 2] 

1.  Historical Snapshot 

In 1907 following Curie's work, Pierre Weiss [Ref. 3] proposed a theory of 

ferromagnetism in which magnetic moments interact with each other through an artificial 

molecular field proportional to the average magnetization. This type of theory is referred 

to as a "mean-field" theory; mean field theories have only limited accuracy but are often 
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useful as a first approach. Subsequent theories incorporated pairwise interaction of 

magnetic moments localized on fixed lattice sites with an energy that achieves a 

maximum value, J, when the moments are either aligned or anti-aligned. Two particular 

models characterizing this energy interaction are the Ising and the Heisenberg models. 

The Ising model assumes the magnetic moments are classical, one dimensional "sticks" 

capable of only two orientations. This mimics the behavior of S=4 quantum spins. Later it 

was found that the Ising model could be applied to a wide range of systems that have an 

essential two-valued nature, such as binary alloys. The Heisenberg model regards the 

magnetic moments as being related to three-component quantum mechanical spin 

operators and assumes the interaction energy is proportional to the scalar product of these 

operators. There are other "spin" dimensional models but only a select few have been 

solved exactly for various space dimensionalities and external magnetic fields. Stanley 

[Ref. 4] provides an excellent comprehensive summary of these models, their 

applicability and limitations. 

Neither the Ising nor the Heisenberg model has yielded as yet to an exact solution 

for a three dimensional (3-space) lattice. In 1944, in a landmark in the history of phase 

transitions and critical phenomena, Onsager [Ref. 5] solved the two-dimensional Ising 

model. An infinite-spin version of the 1-D Heisenberg model with free boundary 

conditions was solved by Fisher [Ref. 6] in 1964. Fisher showed that an infinite-spin 

Heisenberg model was equivalent to a classical version of the Heisenberg model in which 

the quantum spin operators are replaced by classical vectors of length ^JS(S+l) that are 

free to orient in any direction. This classical counterpart to the quantum Heisenberg 

model is called the classical Heisenberg model. The classical Heisenberg model should 



apply to high-spin magnetic systems for all but extremely low temperatures. Fisher's 

student Joyce [Ref. 7] in 1967 published an exact solution to the zero-field one 

dimensional isotropic classical Heisenberg model with cyclic boundary conditions 

employing Wigner 3/ symbols. Blume et al [Ref. 8] in 1975 employed a transfer-matrix 

integral equation method and extended Joyce's work to tackle a 1-D classical Heisenberg 

system in an applied magnetic field. This thesis will follow and compare this latter 

method with a currently proposed method by Auslender [Ref. 9]. 

2.  Models and Thermodynamics 

These Ising and Heisenberg "toy models" enable reasonably accurate theoretical 

descriptions of certain physical systems and, significantly, shed valuable thermodynamic 

insight on some fluid and magnetic phase transformations. Statistical mechanics 

establishes a connection between the microscopic and macroscopic, or bulk, 

thermodynamic descriptions of a system. Central to statistical mechanical formulations is 

the partition function, 

Z=2>p(-M<r))      where /? = TV (U> 
all a Kg 

ks   is the Boltzmann constant, Tis the absolute temperature, and  3& is the energy 

Hamiltonian for each available quantum state, a As a summation of all Boltzmann 

factors, the partition function is the inverse proportionality factor between the probability 

of a particular energy state, P(cr) and each Boltzmann factor, 

e-M*) 
i>M=-—- (1.2) 



If ascertainable, the partition function is a very useful result. In fact, the partition 

function can be called the holy grail of equilibrium statistical mechanics because 

essentially an entire thermodynamic description of a system can be derived from this 

function. The generalized ensemble theory of Gibbs enables computing the complete set 

of thermodynamic quantities from purely mechanical properties of its microscopic 

constituents assuming only a "mechanical" structure, and obedience of Lagrange and 

Hamilton's equations of motion [Ref. 10]. Thermodynamic averages such as entropy, 

average energy, heat capacity, magnetization and susceptibility, as well as the Gibbs 

potential and particularly the Helmholtz free energy are derived directly from the 

partition function. Of course, the essential completeness of the partition function 

necessitates a summation over all states; therefore, obtaining the partition function is no 

small challenge. This underscores the value of models that permit an exact determination 

of the partition function. A model can enable a theoretical calculation of state variables. 

Of course, a model's validity and utility corresponds directly with its fidelity to reality. 

B.        MESOSCOPIC MOLECULAR CLUSTERS 

Recently, fascinating experiments with large molecular clusters of metal ions 

provide an opportunity to employ a one dimensional Heisenberg spin model. Of interest 

is both the extremely clever and revealing experimental techniques and the particular 

scale (nanometer) of these investigations, where renormalization group theory [Ref. 11] 

had heretofore "coarse grained", between atomic and bulk scales. These "mesoscopic" 

magnetic molecular clusters are enabling investigation of such behavior as quantum 

tunnelling of magnetization [Refs. 12, 13]. Some authors have forecast technological 

applications of these ultrasmall complexes in the field of both data storage and quantum 



computing [Refs. 14, 15, 16] . Two molecular structures, depicted in Figure 1, are 

particularly noteworthy for their symmetry, high spin and revealing characteristics. The 

first contains twelve manganese ions, arranged in a ring of eight MN
3+

 ions with spin S=2 

aligned parallel, enveloping the remaining four manganese MN
4+

 atoms which form a 

tetrahedron with spins S^ in the opposite direction to the encircling octagon. This 

manganese acetate, MNI2 On(CH3 COO)i6 (H2 0)4 is described as superparamagnetic, 

Schematic view of the core of a 
[Mn,2012(carboxyiato)16] cluster in which only the 
metal atoms and the bridging oxygen atoms 
(small circles) are shown. The manganese(IV) at- 
oms are enhanced by the shadowing. 

View of the ring structure of the Fen0 clus- 
ter, where the dotted circles represent the iron 

. atoms and the empty circles are. in order of de- 
creasing size, chlorine, oxygen, and carbon. 

Figure 1. Two Mesoscopic molecular clusters, the manganese acetate on the left and the 
ferric wheel, right. (From Ref. 15) 



having a ground state of S=10 and the measured spin dynamics of this cluster in varying 

magnetic field reveals a hysteretic magnetic relaxation ascribed to resonant tunneling 

between quantum spin states. [Refs. 17, 18, 19] The second noteworthy molecular 

cluster is [Fe(OCH3)2(02CCH2CL)]io, known as a "ferric wheel". It contains 10 nearly 

coplanar Fe + ions each of spin S=^, symetrically positioned on what constitutes a 

Heisenberg ring, a planar, one-dimensional spin system. In addition to this "ferric wheel* 

decagon, other iron molecular clusters have been synthesized, (e.g. Feg, Fen ,Fi9, as 

well as Feio). 

These molecular clusters would therefore seem to contain sufficiently few 

magnetic constituents that an exact determination of the partition function could be 

attempted. According to Gatteschi et al, however, [Ref. 15] when commenting on the 

quantum mechanical energy computations of these ferric rings: 

A quantitative interpretation of the magnetic properties of these 
compounds has been possible only for Fe8, and this at the cost of some 
effort [Ref. 20], the total number of states being 1,679,616. Exploiting 
symmetry allows the reduction of the problem to that of calculating 81 
matrices, ranging in dimension from 1 to 4,170. A similar analysis proved 
to be impossible for the Fen or Fei9 clusters. Even with use of all the 
possible symmetries, the dimensions of the matrices remain much too 
large to be tackled with the standard approach. In this field, theoretical 
developments are strongly needed, so that we can interpret the 
thermodynamic properties of the new materials. 

This clarion invitation to employ the theoretical Heisenberg spin model has been 

answered by Luscombe etal, [Ref. 21] astutely developing approximations for the 

relevant thermodynamic qualities. In [Ref. 21] it was shown that the classical Heisenberg 

model well approximated the observed thermodynamic properties of the "ferric wheel" 



cluster with 10 Fe3+ ions of spin S=5/2. This collaboration between theoretician and 

experimentalist was acknowledged by the latter in January, 1998, when Lasciafari et al, 

[Ref. 22] the leading research team in the field, effectively employed theoretical 

thermodynamic results from [Ref. 21] to advance the macromolecular magnetic frontier. 

The continued development of these molecular magnetic systems, hopefully into 

useful nanomagnetic technologies, will clearly require reliable and robust theoretical 

techniques for predicting their thermodynamic properties. As noted above, it has been 

shown [Refs. 21 & 22] that approximate treatments based on classical Heisenberg spins 

can predict extremely well the observed magnetic behavior of small quantum Heisenberg 

systems. It is thus worthwhile to search for improved theoretical approaches to modeling 

the thermodynamic properties of classical Heisenberg spin systems. As will be discussed 

below, Blume's method [Ref. 8] for evaluating the partition function of the 1-D classical 

Heisenberg model in an applied magnetic field involves solving numerically an 

eigenvalue integral equation based on what is known as the transfer-matrix operator as its 

kernel. Using a numerical Gaussian integration technique, Blume et al transform the 

eigenvalue integral equation into a matrix eigenvalue equation. Auslender, [Ref. 9], has 

recently proposed an alternate strategy for solving the integral equation. Auslender's 

proposal is to represent the transfer-matrix operator in a basis set of spherical harmonics. 

As will be shown below, the spherical harmonics are the eigenvectors of the transfer- 

matrix operator for zero magnetic field in this basis set. Whether Auslender's proposal 

results in a more efficient method from a numerical point of view remains to be seen. In 

this thesis, we will, for the first time, set up the matrix representation of the transfer- 



matrix operator in the spherical harmonic basis set. Since the transfer matrix method is 

key to the results of this thesis, we will review this method in the next section. 

C.       TRANSFER MATRIX FOR AN ISING MODEL 

Attributed to Kramers and Wannier [Ref. 23], the simplest illustration of the 

transfer-matrix technique is its application to the one dimensional nearest neighbor N- 

spin Ising model in a magnetic field. The physical justification will be presented in the 

next chapter, what follows simply demonstrates the math. 

The 1-D nearest neighbor Ising Hamiltonian is defined by 

Of = -JjjrfirM ~j^STt+aM\ ( 1.3) 
i=l Z  i=l 

where ai = +1  is the randomly up or down oriented spin \ Ising variable at lattice site /, 

l<i<N, and where J is the nearest neighbor exchange parameter, and H is the applied 

static magnetic field which is parallel or antiparallel to the moment of each "invertable" 

spin. Although an open Ising chain is solvable without recourse to the transfer-matrix 

method (e.g. Stanley [Ref. 4]), here we will instead assume periodic boundary conditions 

and define. aN+l = ax. Recalling equation (1.2), thermodynamic averages are constructed 

from the probability distribution   P(o) = Z"1 exp(- fi&(cr)), where ß = (kBT)~*, 

and Zu is the partition function, 

[or] {a) \       1=1 2   i=1 ) 

The notation {a} indicates a summation over 2N spin configuration, i.e. 

i i 

^= J] X > a™* K = ßJ and L = ßH are dimensionless coupling constants. 
{a}      Oj=-l «^=-1 



Using the fact that Ising variables are classical "sticks" that will commute, the 

exponential of the sum is a product of the exponentials and (1.4) may be written, 

^fci)^^^)^-^) T{(jN_x,aN)T{aNG,), (1.5) 

where T(afaM)= expfZcr.cr,..,., +—(«r, +cri+1)] which written out explicitly is a 2x2 

transfer matrix with elements T(a,a'), each spin a having possible values ± 1, 

T = 
T(+l,+l)   T(+l-lf] 
W-U-l)   T{-\-\\ 

f0K+L      0-K \ 

-K        „K-L 
(1.6) 

Then, summing over spins 2,.. .,N in (1.5) the partition function is given by 

(1.7) 
<T,=-1 

that is the partition function of the N-spin Ising model with periodic boundary conditions 

is given as the trace of the N* power of the transfer matrix. Since the trace of a matrix is 

equal to the sum of its eigenvalues, and the eigenvalues of TN are Af and X\ where these 

are determined by the equation, 

e— -X      e .K+L 

-K 

K 

K-L e^-X 
= 0 with solutions ^ I = eK cosh L ± (e2K sinh2 L + e~2K ) 5, (1.8) 

we finally arrive at the result Z^= X^  + X% = Xf 
r  r^ 
i- 

A \^j 
(1.9) 

J 

Since Ä,i>Ä,2, the second term in the parenthesis in (1.9) goes to zero for large N and can 



be neglected. In zero magnetic field, H=0=L, (1.9) including both eigenvalues, yields 

ZN=2N((:oshNK + SinhNK). (1.10) 

This nearest neighbor Ising discrete spin system engenders a "2 by 2" transfer 

matrix. The nearest neighbor classical Heisenberg model however, has a continuously 

directable, all aspect spin system and the transfer "matrix" for continuous spins is an 

infinite matrix - or the kernel of an integral equation. Nevertheless, the eigenvalues of 

the transfer matrix allow one to obtain the partition function. We will discuss in Chapter 

El the application of the transfer-matrix method to the classical Heisenberg model. 

D.       THESIS OBJECTIVES 

This thesis will contrast two methods of solving the one dimensional classical 

Heisenberg spin model. Blume and Auslender are the authors of the two techniques, the 

former acknowledged as the accepted method and the latter, a proposed alternative. Both 

Auslender's and Blume's methods are concerned with obtaining eigenvalues to the 

transfer matrix associated with the one-dimensional, nearest neighbor classical 

Heisenberg model in a magnetic field. Both methods seek the solutions of the eigenvalue 

equation: 

\ds' T{s,s')Vlm{s')=Km¥M^ (1.11) 

where T(s,S') = exp Ks• s' + -L(sz +S'Z)\;   ds = sin 6d6d$, and s,s' are adjacent three 
V 2 J 

component spin vectors. Both methods seek the partition function for the N- spin system 

with periodic boundary conditions, which is given in terms of the eigenvalues 

z»=2X„- (i.i2) 
/.IB 
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For zero magnetic field, the eigenvalues and eigenvectors are exactly obtainable as first 

shown by Joyce. [Ref. 7] In this case Atm = 4nf,(k) where//(K) are the modified 

spherical Bessel functions, and y/lm (s) = Ylm (0, <fi), the spherical harmonics. 

Blume et al, (Heller and Lurie coauthors)[Ref.8], turn the integral eigenvalue 

equation into an M x M matrix eigenvalue equation using M-point Gaussian integration. 

With a matrix size of 16x16, this technique results in a convergence to seven significant 

figures for the values of the Hamiltonian.   Auslender also turns the integral equation into 

a matrix equation. The matrix in this case is obtained by expanding the eigenvectors 

using the spherical harmonics as a basis set. That is, he suggests expanding the 

eigenvectors in a magnetic field using zero-field eigenvectors. In principle, Auslender's 

matrix is infinite dimensional and must be truncated at some point. It is likely that a 

comparison of merit will only result from detailed numerical computations; however, this 

thesis will merely discuss formulations that reduce the integral equations to matrix 

eigenvalue equations employing both methods. Leading up to these formulations, any 

discussion of equilibrium statistical mechanics of the classical Heisenberg spin model 

must commence with formulating the energy exchange Hamiltonian. The transfer matrix 

will then lead to setting up the eigenvalue equation. There will be some discussion of 

zero magnetic field behavior and necessary discussion of integral equations, especially 

the role of a symmetric kernel. Representing the energy coupling of the Heisenberg ring 

to a magnetic field with symmetric or asymmetric transfer operators will be shown to 

result in mathematically equivalent but pragmatically distinctive element formulations. 

11 



Prior to this theoretical development in Chapter ID, Chapter II will consist of a 

cursory review of the magnetic properties of matter following largely the excellent if old 

treatments of Von Hippel [Refs. 1&24], Kittel [Ref. 25], and Ashcroft & Mermin [Ref. 

26]. 
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H.       MAGNETIC PROPERTIES OF SOLIDS 

A.        OVERVIEW 

The magnetic properties of solids originate in the motion of the electrons and in 

the permanent magnetic moments of the atoms and electrons. This chapter will provide a 

review of magnetic characteristics and hopefully lead to a "motivation" of the Heisenberg 

model. Diamagnetism, which is very weak, arises from changes in the atomic orbital 

states induced by an applied magnetic field. Paramagnetism results from the presence of 

permanent atomic or electronic magnetic moments. Ferromagnetism, which is very 

strong, occurs when quantum mechanical exchange interactions align adjacent magnetic 

moments in the same direction. If the exchange interaction aligns the moments in 

opposite directions, and only one type of moment is present, cancellation occurs and the 

material is called anti-ferromagnetic. If two or more types of moments are present, there 

is a net moment equal to the difference and the material is called ferrimagnetic. Above 

some critical temperature, a phase transformation occurs and a ferro-, antiferro-, or 

ferrimagnetic material becomes paramagnetic. Ferro- and ferrimagnetic materials consist 

of domains or regions of completely magnetized material, separated by boundaries 

known as Bloch walls. According to Kittel [Ref. 25], and Hippel [Ref. 1], domain 

structure, dynamics, and boundary displacements are determined by various types of 

energies, such as magnetostatic energy, crystal anisotropy and magnetorestrictive energy. 

The complexity of these resultant forces contribute to the scientific and technological 

richness in this field. The succeeding paragraphs merely scratch the surface of these 

topics. 
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B.       ANGULAR MOMENTUM AND MAGNETISM 

The relation between angular momentum and magnetism is based on the mac- 

roscopic observation that a current /circling an area A creates a magnetic field identical 

to that of a magnetic dipole. As such, the Bohr hydrogen atom's magnetic dipole, 

\n\ = IA = ev7ir2, (2.1) 

applies for an electron circling the proton v - times per second in an orbit of radius r. 

For this same orbit the classical mechanical angular momentum, 

|L| = \mv x r| = m2nr v r. (2.2) 

This angular momentum L is antiparallel to //   and combining (2.1) and (2.2) shows the 

g 
magnetic and angular moments are related as // = L. 

2m 

Thus the magnetic and mechanical moments of circling electrons are interdependent and 

the gyromagnetic ratio y is classically defined y = ^-- (2-3) 2m 

At atomic scales, the Bohr magneton is considered an elementary magnetic moment with 

\juB\ = = yh = 9.21X10"24 in units amperes meter2 or joules/tesla (2.4) 
2me 

(Note: of course, in measuring magnetic moments of nuclei, the nuclear magneton would 

be a preferred unit and with a mass substitution, \ßN\ = \/iBI) 
1836 

If the magnetic moment is measured in Bohr magnetons and angular momentum in units 

of h, the ratio of magnetic to mechanical moment, known as the dimensionless g-factor, 

(for the classically single orbiting electron), g = —— = y— = 1 
LßB       MB 
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In a magnetic field B, the permanent magnetic moments will experience a torque 

f=nxB = £l,   but  L = —/2,andthus^ = -=^xB = -Y//xB (2.5)" 
dt e at     2m 

For a static field applied in the +z direction, taking the cross product followed by the 

second time derivatives, yields the component equations of (2.5): 

Mx=-fa)2M,  .  »y=-(yB)2My,     M,=0. (2-6) 

Solutions of (2.6) are: juz=A coscozt,   ny = A Sin cozt, and  fiz = const, where 

CD  = yB and coz 12x = vm is called the Larmor frequency. Hence these two oscillating 

components are 90° out of phase and add to a circular rotation in the x-y plane. The 

magnetic moment precesses around the magnetic field axis with a frequency proportional 

to the field strength but independent of position. 

The Larmor frequency is not quantized but three quantum numbers are integer 

multiples of h. The boundary conditions on the time independent Schrödinger wave 

equation restrict the quantum numbers as follows. The principle quantum number n is 

allowed positive integer values 1,2,3,... The orbital angular momentum quantum number 

I can take integer values 0</<n. Quantum mechanically the total orbital angular 

momentum = L = ^(i + fy. The magnetic field directed component of L=Lz=mh, 

where the magnetic quantum number, 

with m = £,£-l, -(^-l), -^, and Ö the quantized polar angle between the B field 

andL. 
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The quantized magnetic moment in the magnetic field has a potential energy 

U= -fx -B^pBcosO = -yl£{£ + l^B\\B\Cos0 = n\fiBB. (2.8) 

The electron itself, has intrinsic angular momentum and thus creates a magnetic 

e 
moment fi = -ge —— S   where the electronic"^" factor was predicted by Dirac to equal 

approximately 2, has been measured experimentally to 2.0023, and is given [Ref.26] by, 

ft =2 l + JL + o(a2)+. e2 1 , a, the fine structure constant = » . (2.9) 
Arcejic    137 

Using the electronic spin "g" factor equal to twice the orbital, then classically the 

permanent magnetic dipole moment ju = -y(L + 2S). (2.10) 

C.        SPIN ORBIT COUPLING, SHELL MODEL, AND HUND' S RULES 

The combined angular momentum produced by the spin and orbital motion is 

J=L+S. The total angular momentum J is always a good quantum number, (i.e. 

commutes with the Hamiltonian), but L and S are good only to the extent that spin - orbit 

coupling is unimportantfRef. 26]. Both the spin and orbital angular moments will tend to 

precess around / and, 

J2 = {L+SJ =L
2+s2

+ZL-S = e(e+i)h2 +-n2+2L-S (2.11) 

The vector addition first solved by Lande results in the g - factor for L-S coupling 

^(L + 2S).,^=l + ^±i)^t«±0 (212) 

where this Lande g- factor is relevant in the expression //= -gpB J/h. 
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Glibly allowing that the colossal variety of not only magnetic effects, but of all 

nature's splendor derives quantum mechanically from the atomic shell model, angular 

momenta coupling and shell filling configurations are key to understanding this process. 

Deriving from the Pauli exclusion principle or the antisymmetry of fermion wave 

functions, the underlying quantum mechanical justification of shell filling, selection 

rules, ionization potentials, electron affinities and atomic bonds are beyond the scope of 

this thesis, but brief essentials relevant to magnetic properties follow. Filled shells will 

have zero orbital, spin, and total angular momentum, and consequently zero permanent 

magnetic moment. For ground states in partially filled shells, the order of filling obey the 

Pauli exclusion principle and is roughly governed by Hund's rules which are as follows: 

Rule 1. In placing n electrons into the l(2£ +1) levels of the partially filled shell, 

those that lie lowest in energy have the largest total spin S; thus if possible, the 

first 2£+l of allowed electrons in a shell will align spin-up. 

Rule 2. The total orbital angular momentum L of the lowest lying states has the 

largest value that is consistent with Rule 1 and the exclusion principle 

Rule 3. Total angular momentum J = ^jj{j + l) where J takes on integral values 

between \L - S\ if the shell is less than half full and L + S if more than half full. 

Russel-Saunders coupling applicable to lighter elements and favored in the d-shell and f- 

shell, is represented by a term in the Hamiltonian of the form AOL-S) This spin-orbit 

coupling will favor maximum J (parallel orbital and spin angular momenta) if X is 

negative, and minimum J (antiparallel orbital and spin momenta) if X is positive. As it 

turns out, X is positive for shell that are less than half filled and negative for shells more 
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than half filled. The configurations of ground state d-shell and f-shell ions are tabulated 

below. The "multiplets" notation u2MXj\ where (X=L in the 'SPDF' spectroscopic 

code), conveys S, L, and J, and the shell filling order for solids of magnetic interest 

illustrate Hund's rules. 

d-shdl (/ = -2) 

-1, -2 S L = |SL| SYMBOL n /2 = 2, 1,      o, J 

1 i 1/2 2 3/21 2D3I2 
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i 
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i 
i         i 

1 
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3 
3 
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3/2 •J = \L - S\ 

3F2 

^3/2 
4 I i         i i 2 2 0    J 5D0 5 i i        i i 5/2 0 5/2 •^5/2 
6 it t         t t 2 2 4    1 5D* 
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8 

it 
it 

it        t 
it      ir 

t 
t 

3/2 
1 

3 
3 fk + S Fg/2 

3F* 
9 it IT   .    it it 1/2 2 5/2J 2D5I2 10 |           it it      it it ir 0 0 0 % 

/-shell (/ = 3) 

-2, -3 s L = |Z/J J n Zr = 3, 2,   1,   0,-1, 

1 i 1/2 3 5/2- 2F*,2 
2 i i 1 5 4 3H, 
3 
4 

i 
i 

i    i 
i    i    i 

3/2 
2 

6 
6 

9/2 
4 'J = \L- S\ '9/2 

5 i i    i    i    i 5/2 5 5/2 #5/2 
6 i i    i    i    i i 3 3 0     , 7F„ 
7 i i    i    i    i i i 7/2 0 7/2 8c 

■J7/2 
8 it T    t    t     t t t 3 3 6     ] 7F< 
9 it a  t   t   t t t 5/2 5 15/2 #15/2 

It) 
11 

it 
it 

4t   it   t    t 
it   ir  it   t 

t 
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t 
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2 
3/2 

6 
6 

8 
15/2 >J = L + S 

•M5/2 
12 it it   it  it   it t t 1 5 6 3#6 
13 it ir   it  Jt   it it t 1/2 •    3 7/2 J ^7/2 
14 it it   it  ir   it it it 0 0 0 'So 
aT = spini;i = = spin —j. 

. 

Table 1. Ground states of ions with partial d- or/-shells per Hund's rules3 [From Ref.26] 
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D.       MAGNETIZATION AND DIAMAGNETISM 

The magnetic induction B in free space is related to the field strength or magnetic 

intensity by B = //0H where ß0 = 4;rxlCT7 henry/meter is called the permeability of 

vacuum. In a solid material B = /M, which alternatively can be expressed as, 

B^0(H + M)=//H. (2.13) 

(Note: Of course, // here is the permeability of the solid not a dipole moment.) M is 

called the magnetization of the solid, the term //0M equals the extra magnetic induction 

due to the material. M in fact, is equivalent to the density of magnetic dipole moment or 

dipole moment per unit volume. The magnetization is also proportional to the applied 

field and the factor of proportionality is called the susceptibility. The magnetic 

susceptibility per unit volume is defined as j=M/H. (2.14) 

Substances with a negative magnetic susceptibility demonstrate diamagnetism 

which is a material manifestation of Lenz's Law, which in effect orients Faraday 

induction such that "a current induced by a changing field will always oppose the change 

that induces it." With zero angular momentum, fully closed shells have zero permanent 

moments, (eq 2.10), but in an external magnetic field, there is an induced moment. The 

averaged induced magnetic moment for each electron equals, 

\.2 

M^^-i-1-*, (2-15) 
O/W 

where e and m equal the electron charge and mass and (r) is the average electron orbital 

radius. Diamagnetism in most solids is very weak with susceptibilities on the order of 

10"5. It is generally only observed when other types of magnetism are totally absent. The 

variety of net magnetic susceptibilities in matter is illustrated by Figure 2. 
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Figure 2. Diamagnetic elements in lower portion, paramagnetic in upper [From Ref. 27] 

E. PARAMAGNEHSM 

Positive susceptibilities (x>0) are generally termed paramagnetic. Permanent 

magnetic moments give rise to paramagnetism, and per Kittel [Ref. 25], electronic 

paramagnetism is found in : 

a) All atoms and molecules possessing an odd number of electrons, since the 

total spin of the system cannot go to zero. 

b) All free atoms and ions with a partly filled inner shell: transition elements, 

rare earth and actinide elements. 

c) A few miscellaneous compounds with an even number of electrons, including 

molecular oxygen and organic biradicals. 

d) Most but not all metals as depicted in Figure 2. 
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What follows is a Maxwell Boltzmann distribution treatment of the Langevin Theory of 

paramagnetism. 

1. Langevin Function 

Permanent magnetic moments tend to orient in magnetic fields. With N atoms per 

unit volume, each bearing a magnetic moment ßi, magnetization results from the 

orientation of these moments in an applied field. Thermal disorder resists this orientation 

tendency. The energy of interaction with an applied magnetic field His 

E=-fi- H = -juHcosO, where 6 is between the moment and the field direction.   The 

magnetization will be M=N/J cos0 where iVis the density and cos0 is the average over 

a distribution in thermal equilibrium. According to Boltzmann distribution, the relative 

probability of finding a molecule in a solid angle element du is proportional to 

eE//a, and cos0 = jV^cosftüQ ^je'^da   Over all solid angles, 

c^s0 = J2*sin0 cosee^^dö + fesmee^^de (2.16) 
0 o 

letting x=cos0 and a = juH / kT, then 

c^= {e^xdc* \eaxdx = —ln \eaxdx = cotha-- = L(a). (2.17) 
i -J. da    ii a 

L(a) is called the Langevin function. When the field energy is small in comparison with 

kT, a «1, then L(a)~a/3 and    M * Nju2B./3kT (2.18) 

The magnetic susceptibility in the limit as fjH/kT«l   is 

X=M/H = Nju2/3kT = C/T, (2.19) 

where the Curie constant C = Np2/3k.   The inverse temperature dependence is known 
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as the Curie law and the entire expression is called the Langevin equation. This Langevin 

derivation is entirely classical with unrestricted space orientation of the moments in a 

magnetic field and furthermore, depends intrinsically on the Maxwell Boltzmann 

distribution. A quantum theory of paramagnetism still employing the Boltzmann 

distribution uses the Lande g factor (2.12) and what is known as the Brillouin function 

for calculating the 2J+1 discrete and equally placed energy levels in the field. 

Essentially equivalent to the Curie Law, the calculation yields % - Np2
MB* foT, where 

the effective number of Bohr magnetons is defined as p = g[/(J +1)]2 . 

2. Pauli Paramagnetism 

The Langevin equation does not apply to conduction electrons which obey the 

Fermi-Dirac distribution. Conduction electrons are neither spatially localized like 

electrons in partially filled ionic shells, nor because of stringent constraints of the 

exclusion principle, do they respond independently like electrons localized on different 

ions [Ref. 26]. Although small, Pauli paramagnetic susceptibility results from the 

coupling of intrinsic electron spins with an applied field H. There is also a diamagnetic 

effect arising from the coupling of the field to the orbital electron motion. This is called 

Landau diamagnetism and fox free electrons in metals, the susceptibility, 

XLandau = —ZPauli   The resulting net susceptibility for N conduction electron is 

X = NpB
2/EF , where Ep is the Fermi level.   Pauli paramagnetism is independent of 

temperature and even at room temperature is hundreds of times smaller than the 

paramagnetism of magnetic ions. Paramagnetism usually masks the atomic 

diamagnetism present in solids. In practice, it is the total susceptibility that is revealed by 
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a measurement of bulk moment induced by a field and this is a combination of the Pauli 

paramagnetic susceptibility, the Landau diamagnetic susceptibility, and the Larmor 

diamagnetic susceptibility (of the closed-shell ion cores). As a result, isolating 

experimentally these particular terms of the susceptibility is not at all straightforward. 

Nuclear magnetic resonance (NMR) is one such technique that enables experimental 

discrimination of these susceptibilities. Like NMR which can measure spin-lattice 

relaxation rates, another technique called muon spin relaxation, also is central to the 

current investigations of magnetic molecular clusters cited in the introduction [Ref. 22]. 

Unlike these recent frontier if somewhat esoteric inquiries, the next section will attempt 

to describe a more prosaic phenomena, namely refrigerator magnets. 

F.        FERROMAGNETISM 

The transition metals Fe, Co and Ni, rare earth metals such as Gd and a few 

oxides such as CrC>2 and ErO display very large magnetization. These ferromagnetic 

materials contain permanent atomic magnetic dipoles, the difference from a paramagnetic 

substance being that, below a certain temperature, the dipoles retain parallel orientation 

even in the absence of an external field. Figure 3a. depicts a magnetization curve of a 

ferromagnetic material. This hysteresis loop characterizes the magnetic induction B as a 

"function" of the applied field H. As the applied field H is increased, B begins to 

increase slowly. The slope rises sharply as B rapidly increases until the saturation 

induction. Upon decreasing the field, the original curve is not retraced. At H equal to 

zero, the specimen is still magnetized with the remanent induction. Here is the reason 

that zero field permanent magnets are able to emblazon refrigerators. If H is now made 
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negative, when B=0 indicates the coercive force required to de-magnetize the material. 

The symmetric curve depicts saturation, remanence and coercive force for negative 

induction values. This irreversible double valued hysteresis is the signature behavior of 

ferromagnetic materials. The work required to go around the hysteresis loop 

once is proportional to the enclosed area. Technologically an alloy with a fat loop 

(Figure 3b.) makes a good permanent magnet; whereas a thin loop, (Figure 3c.) with 

small area, demagnetizes rapidly and makes an efficient AC transformer element. 

saturation 

:©1994 EiWycfep-i*fa BriUnrti«a; fc»..; 

Figure 3. Hysteresis curves for (a) soft iron, (b) a good permanent magnet, and (c) an 
alloy suitable for use in a power transformer. [From Ref. 27] 

The source of ferromagnetism is a parallel alignment of unpaired electron spins. 

As noted in the introduction, Weiss (1907) postulated a molecular field to explain ferro- 

magnetism and he further postulated domain formation to explain the hysteretic magnet- 

ization curve. The molecular Weiss field was formulated as Hw=X.M, where X is termed 

the Weiss constant and this field is added to the applied field H in Curie's Law (eq 2.18). 
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Then the magnetization, 

d \      ,    , •     ,    lMl    M C C room M = —(H + AM), and solving for i-± = — = % = r   .^ = 7-^-, (2-20) 
2^ H       ü i — AL       L — LQ 

where Tc the Curie temperature, is where the transformation from the paramagnetic to the 

ferromagnetic occurs. The domain hypothesis can be inferred from the hysteresis curve 

and were observed in fact some twenty five years later in 1931. Within domains, all 

moments are aligned but there is random orientation of the domains resulting in a net 

magnetization of zero. The external magnetic field induces magnetization via domain 

wall motion. The applied external field will cause favorably aligned domains to grow 

thereby shrinking unfavorably oriented domains. Rotation of other domain moments 

maximizes the magnetization. The saturation value corresponds essentially to single 

domain status. When the field is removed, the specimen remains magnetized. Although 

domains typically tend to rotate back, the large aligned domains do not easily revert to 

the original random arrangement. Reduction and reversal of the field allow a domain 

pattern to return, depending on the ease with which domain walls can nucleate, move 

through the material, and again be ejected. 

G.       ANTIFERROMAGNETISM AND FERRIMAGNETISM 

There are two other important classes of magnetic behavior. When adjacent 

unpaired spins are aligned in an opposite fashion, the resultant phenomenon is called 

antiferromagnetism. The susceptibility is then positive and increases as the temperature 

increases since thermal energy as always disrupts long range order. Figure 4. compares 

alignment of magnetic moments and temperature effects on ferro- and antiferromagnetic 

materials. The peak in the susceptibility % versus temperature T in Figure 4b. is called 
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tic the Neel temperature 0N and corresponds to the Curie temperature in ferromagnet: 

materials. A class of complex oxides known as spinels, having the composition 

XOFe203 (where X is a metal), exhibit ferromagnetic interaction yet have anti-parallel 

spins as depicted in Figure 4c. A net moment results since the opposite spins are 

unequal. The magnetization of these spinels, known as ferrites, have wide application 

the electronics industry. 

m 

(a) (b) (c) 

;,    ,,   /l    ,1    ,1 /. M ;i 

I     II     I 
Figure 4. Magnetic susceptibility versus T for (a) ferromagnetic, (b) antiferro- 
Magnetic, and (c) ferrimagnetic materials, with magnetic moment alignments 
indicated for each case. [After Ref. 1] 

H.       QUENCHED ORBITS AND THE HEISENBERG MODEL 

The moments of ferromagnetic arrays could in principle stem from orbital 

moments as well as spin moments of individual electrons. However, since crystal 

structures are held together by electron bonds, it is not surprising to discover from 

magnetomechanical measurements that the orbital moments are essentially quenched by 

such bond formation. The gyromagnetic ratio for orbital moments is e/2m (eq. 2.3); for 
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ferromagnetics, it proves to be about e/m, the value of electron spins. Although the 

contribution of orbital moments to the saturation magnetization is generally only 5-10%' 

of the total, they are nonetheless important as a source of magnetic crystal anisotropy 

[Ref. 1]. A quantum mechanical explanation for the Weiss field proposed by Heisenberg 

(1928), involves an exchange interaction between neighboring electron spins. The 

exchange energy explanation may be motivated by the Pauli exclusion principle and 

corresponding Fermi Dirac statistics requiring distinction of each electronic state by its 

own unique set of quantum numbers. Overlapping wave functions can lead to a decrease 

in over-all energy in certain cases, and therefore favor a parallel alignment of spins. The 

spin quantum number corresponds to up or down, hence inversion from parallel to 

antiparallel leads to a new electron cloud of different electrostatic energy. Böhm 

[Ref.28] concurs and attributes the antisymmetry of the complete, electronic wave 

function with prescribing parallel or antiparallel spin alignments. Furthermore the 

energy, apparently a result of spin interactions, is actually a result of the correlation 

between mean coulomb energy and spin. 

Ashcroft and Mermin [Ref. 26] construct a spin Hamiltonian for a two electron 

system noting that each individual electron spin operator satisfies St = — 

so that total S satisfies, 

S2=(S,+S2f=l + 2SrS2, (2.21) 

3 
since S has eigenvalues S(S+1) in states of spin S, the operator S, • S2 has eigenvalue -4 

in the singlet (S=0) state and +4" in the triplet (S=l) states. Consequently the operator 
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«3^spm=—\ES + 3Et)-(Es -Et)Sl -S2 has eigenvalue Es in the singlet and Et in each of 

the triplet states and is the desired Hamiltonian. By redefining the zero of energy, the 

constant, common to all four states, (Es +3Et)/4 can be omitted and the spin 

Hamiltonian is J^sp'm = -JS, • S2,    J = Es - Et. (2.22) 

Seeking lowest energy, the scalar product of the vector spin operators will favor parallel 

spins if J is positive and antiparallel if J is negative. It is also noteworthy that in contrast 

to dipolar interaction, the coupling in this spin Hamiltonian depends only on the relative 

orientation of the two spins and not on the vector difference between the spins.   It is 

remarkably true that in many cases of interest, the form of the spin Hamiltonian is simply 

that for the two spin case summed over all pairs of ions, 

jr^=-2^S(-Sy (2.23) 

This expression (2.23) is called the Heisenberg Hamiltonian and the Jtj are the exchange 

coupling constants. Stanley [Ref. 4] points out that this model is not valid for a wide 

variety of real magnetic materials as it assumes: 

a) Well localized spins (i.e. small wave function overlap) 

b) Complete isotropy of interaction. 

The 3d transition metals have overlapping wave function and rare earth metals are 

generally anisotropic. Nonetheless, the Heisenberg spin Hamiltonian formulation can 

yield fruitful theoretical information in many cases, one such being the mesoscopic 

"Ferric" Wheels. 
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m. HEISENBERG SPIN SYSTEM FORMULATIONS 

A.       OUTLINE 

This chapter will contrast two theoretical approaches to obtaining the partition 

function for a one-dimensional nearest neighbor classical Heisenberg spin system in a 

magnetic field. At the outset, section B will develop the symmetric and non-symmetric 

transfer operators, and show that the partition function for an N-spin system is equal to 

the sum of the "N^-power raised" transfer matrix eigenvalues. Next section C will 

delineate the zero field analytic solution of a classical Heisenberg ring. Then, tackling a 

finite magnetic field in Section D, the numerical integration approach of Blume et a/will 

be described, following directly the authors' formulation. Section E will suggest a new 

approach to solving the classical Heisenberg spin system. The matrix eigenvalue 

equation will be constructed by representing the transfer operator kernel in a basis of 

spherical harmonics, (which are the zero field eigenvectors in the analytic solution). The 

infinite matrix that results will be examined qualitatively for both zero and non-zero field 

characteristics. Development using first a symmetric magnetic field transfer operator, 

followed by and compared with a non-symmetric transfer operator expansion, employ 

both integral equation and rotation group mathematics. The non-symmetric transfer 

operator surprisingly yields a simpler matrix construction and both formulations enable a 

conceptual contrasting to Blume et al while setting the stage for an actual calculational 

comparison. 
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B.       TRANSFER MATRIX FOR CLASSICAL HEISENBERG SPINS. 

The starting point in this development is the Heisenberg Hamiltonian, which is a 

summation of quantum spin operators in units of h: 

N 

ä^-J^j S, • Si+1, where S^+1 = Sl  (periodic boundary conditions), and Jis the 
1=1 

unique exchange interaction energy applicable to each adjacent pair. It is noteworthy to 

recall equation (2.22), that in this formulation (J<0) J>0 promotes (anti-) ferromagnetic 

ordering at low temperatures. To incorporate system coupling with the magnetic field, 

the potential energy of a magnetic moment fi in a magnetic field B, is -fiB. Quantum 

mechanically, /s=-g/jB J/h where g is the Lande ^-factor, ^ is the Bohr magneton and J 

is the total angular momentum. This treatment will assume that orbital angular 

momentum L is completely quenched by the crystal fields (i.e. L=0), so the potential 

N 

energy term, (also in units of h), is given by gpBB • £ S,.  H" we take the B field as 
1=1 

defining the z-axis, then the magnetic field energy term is given by gß^^Sf , where 
i=i 

Sf is the z-component of the spin at site i. For later convenience and without any loss of 

generality, we define m = -gpB and thus the total Hamiltonian is given by 

^=^s, .««-«*!;#. (3.i) 
<"=1 1=1 

Now the classical spin approximation, (which is necessarily invalid at low tem- 

peratures), recognizes that quantum spins of spin quantum number S can orient in 2S+ 1 

directions in real space. The spin vectors have length ^JS(S + l) in units of h. We now 
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replace the quantum spins S, -» JS(S+ l)st by classical vectors of length .yJS(S +1), 

where s, is a unit vector at site /, free to point in any direction. 

Cte = -JS{S + l)£Si -sM -mB^+^sf . (3.2) 

The classical Heisenberg Hamiltonian is now 

£s,-s,+1-mi?V^7l)f; 
1=1 i=i 

To simplify the notation, establish effective dimensionless coupling constants and 

create simplified Boltzmann factors, we will define K = ßJS(S +1) = JS(S + l)/(kBT), 

where Tis the absolute temperature and kB = 1.38xl0_23y -K'1. Similarly, we define 

L s ßmBylS{S + l) s mB^S(S+)lkBT. The Boltzmann factor, from statistical 

mechanics is then expressed as, 

exp(-^)=exp[KXS/ -s,+1 + zf>f ]. (3.3) 
V.     i=l i=l        ) 

The partition function as the sum of the Boltzmann factors becomes an integral 

since the classical spins are continuous, 

Z = j jfldSiexp(-ß^)=j jfldsiexP\Kfjsi-SM+Lf4s;\    (3.4) 
S,        Sff »=1 S,        SN "=1 V      »=1 »'=1        ) 

where dsi = s\n6idOidtj)i, is the element of solid angle about "spin" s,. In parallel with 

our treatment of the Ising model in Chapter I, since the spins are classical variables, and 

hence commute with each other, we can express the exponential of the sum in (3.4) as a 

product of exponentials, 

2 = J jfldsiT{s1,s2)T(s2,s3y...l(sN_l,sN)T(slf,s1) , (3.5) 
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where T(s,s') is the transfer operator. In what follows, we examine some of the 

mathematical properties of the transfer operator. We then show that knowledge of the 

eigenvalues of T enable us to find the partition function. 

One way to write T(s,s') is as a symmetric function of its arguments, 

r(s,s') = expftfS.S'+iz(> +5")\ (3 6) 

This form is not necessary, however; one could also contrive the following non- 

symmetric transfer operators: 

T+(s,s')=Qxp(Ks-s' + Lsz)     or    T_(s,s')=exp(Ks-s' + Ls'z); (3.7) 

these non-symmetric operators are in fact transpose pairs since T+ (s',s) = T_ (s,s') 

In Chapter m, Section E we will return to these non-symmetric forms of T. Here we will 

explore the mathematical consequences of employing the symmetric version of T, (3.6). 

If we consider the integral equation 

\ds'T{s,s')¥n{s') = KvM, (3.8) 

this defines the eigenfunctions yn(s) and eigenvalues A„of T, where «=1,2,.... is a 

discrete index. If T(s,s') is symmetric, (e.g. equation (3.6)), then Hilbert-Schmidt 

theory [Ref.29] guarantees that the eigenvectors are a complete orthonormal set and that 

the eigenvalues are real. The completeness and oithonormality of the eigenvectors on the 

unit sphere means: 

\dsy/'n(s)\ffm(s) = Snm (orthonormal) and (3.9a) 

CO 

Y,¥*n(s)¥„(s') = S(s-s') (complete) (3 9b) 

It is shown in the theory of integral equations [Ref.29] that because (3.6) is real and 
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symmetric, we may expand the transfer operator in terms of its eigenvalues and 

eigenvectors, 

T{s,s')=±Xtt¥n(s)v:{s'). (3.10) 

With this expansion, one can show that the partition function for the N-spin system is 

given by, 

z„=ix. (3.H) 

To see how (3.11) arises, let us work out the details for the case of the N=2 

system. Starting from (3.5) we have 

Z2 = Ifadsjis^isA) . (3.12) 

Substituting the expansion (3.10) in (3.12), we have 

Z2 = J \dsxds2 £ KVn (*i V »* fe )Z A« V« fc V« (si) 

CO 00 

»,»i=l j, J, »,m=l 

Z2=Z^, (3.13) 
»=i 

where we have used the orthonormality properties given in (3.9a).  It is thus clear how to 

extend the treatment to general values of N and arrive at (3.11). Just as we obtained in 

the analysis of the Ising model, obtaining the partition function of the classical 

Heisenberg system is tantamount to finding the eigenvalues of the transfer operator. 

33 



C       ZERO-FIELD EIGENVALUES 

At this point, it will be useful to show how one may obtain analytically the 

eigenfunctions and eigenvalues of T for zero applied magnetic field. The key to the 

subsequent development is the use of the following expansion 

» I 

1=0    m=-l 

exp(KSl ..,)= 4*£  ZMKKMKAs2), (3.14) 

where /,(*) = ^JJL 7|+y^K), (3.15) 

is a modified spherical Bessel function and Ylm is the standard spherical harmonic 

function. For future reference in characterizing matrix symmetry, we note the Bessel 

function parity property /; (- K) = (-1); /, (K). In addition, another essential result, 

commonly called the Condon Shortley phase convention, is the fact that the spherical 

harmonics obey Y'm = (-l)T, _m. In what follows, we will work with spherical polar 

coordinates {9,$). The angle between the two "spins" (unit vectors) is given by 

s, -s2 = cos© = cos#i cos#2 +SÜ10, sin#2 cos(^, -02), (3,16) 

which is a standard result from vector analysis. We will use the shorthand notation 

Ytm(s) to denote Ylm(ß,<j>). Equation (3.14) follows from combining two results from 

mathematics. The first is the expansion, 

exp(zcos0)= 2(2/ + l)/;(z)P/(cosö), (3.17) 
/=0 

which is a special case of the Gegenbauer addition theorem for Bessel functions. 
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The second is the addition theorem for spherical harmonics, 

/>(Cos0) = -^- tlJ^XM,^). (3.18) 
•" + i    m=-l 

Combining (3.17) and (3.18) leads to (3.14). 

Comparing (3.14) with (3.10), we can identify the eigenvalues of T as 

Xlm = An ft (K). Note that in this zero-field case each eigenvalue is (2/+l)-fold 

degenerate. When we turn on a B field, the degeneracy is lifted. We also identify the 

eigenfunction of T in the zero-field limit as y/lm (s) = Ylm (s). Note that, as opposed to 

(3.8) in which a single generic index is used to label the eigenfunctions, in this case we 

must employ two indices to label the eigenfunctions and eigenvalues. We can verify that 

the 7;m's are the correct eigenfunctions with the //(K^'s as the eigenvalues as follows. 

Let's assume this assertion to be true and substitute into the eigenvalue integral equation, 

Jexp(Ks, -s2)Ylw(s2)ds2 = ^mYlw(sx). (3.19) 

Now employing the expansion (3.14), and the (3.9a) orthonormality property we have 

(3 20) 

l,m 

Thus, as demonstrated by Joyce [Ref. 7], in zero applied field, the partition function is 

ZN(Kh(^y±(2l+l)fr(K). (3.21) 
7=0 

We can check that (3:21) properly reduces to the correct high-temperature limit 

ZN (o) = (4^)* upon using the property of the modified spherical Bessel function 

/*(o)=<V 
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D.        BLUME, HELLER, AND LUIUE METHODOLOGY 

Published in 1975 [Ref. 8], this numerical method achieved the first theoretical 

results of the thermodynamic properties for the classical Heisenberg magnetic chain in an 

applied magnetic field. Using the transfer matrix method and numerical Gaussian 

integration, this achievment extended the zero field analytic solution of Joyce to the non- 

zero field case. In a magnetic field, formulating a numerical evaluation of the 

eigenfunction, Blume et dl [Ref. 8] first noted that the eigenfunction can, by symmetry, 

be written in the form %„(») = y/Km(cosO^Vj-X*« t where 0 and <j> are the polar 

and azimuthal angles respectively of spin s. This separation of variables recognizes that 

even in the presence of an external field, the azimuthal parameter m remains a good 

quantum number. Letting x = cos 0, utilizing (3.16), and using the symmetric kernel 

(3.6), equation (3.8) (with indices l,m in lieu of») becomes, 

[Kxx' + K$-x2Xl-x'2)fcos(t-t')+L(x + x>)). 

1 2 (3-22) 

The integral over <j>' can be carried out analytically with the result, 

2x\fx'™v{Kxx'+±(x^^ n-(x).     (3.23) 

i  lit ■ 

Here Im(x) = — Jexp(xcos^J -im<f)d<j> = Im(- x) = I_m (x) is the Bessel function of 
0 

imaginary argument. This one-dimensional integral equation can now be solved 

numerically by converting it to a matrix equation. The integral over x' is performed by 
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Nr I 

Ni -point Gaussian integration, using the approximation f" /(x)ax « Yw,/(x), where 

the weights Wj and the points x;- are tabulated. [Ref. 30] The integral equation then 

becomes, 

fefe^kM^^J^Z^^t^V.y, (3.24) 

where Gm (x, x') = Im*™*1^" ^JA - x2)(l - x,2)]^l. If we look for solutions of Eq. 

(3.23) only at the points x = x. of the numerical integration, the integral equation 

becomes a matrix eigenvalue equation: ^ wf}m (x,., xy) y/lm (x;.) = XM ifflm (xi). To make 

this more symmetric, we multiply both sides of the equation by -fi^, obtaining 

X^mVf}=^/m, (3-25) 

where ^m) =V^G« (*.>*, V^7 md ^(fc,) = V^Va-fc)- Equation (3.25) is an 

TVj x Nj matrix eigenvalue equation with Nj determined by the number of points used in 

the numerical integration. As stated in the introduction, (and assuredly worth repeating), 

a value of Ni=16 suffices to give convergence to seven significant figures for all values 

of K and L. The largest eigenvalue of equation (3.25) occurs for m=0. This is in 

consonance with the fact that the eigenfunction belonging to the largest eigenvalues has 

no nodes. In a sufficiently large spin system, only the largest eigenvalue survives, that is 

Z -> XN
0 for N -» oo . The free energy appropriate to an infinite-site system can be 

obtained from this eigenvalue and other thermodynamic quantities can be found by 

numerical differentiation with respect to the appropriate variables. 
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E.       REPRESENTATION IN SPHERICAL HARMONICS 

Mark Auslender, an Israeli physicist, has suggested, in a private communication, 

[Ref. 9], an alternate numerical strategy for solving the eigenvalue problem associated 

with the transfer-operator, (3.8). Auslender's suggestion consists of representing the 

transfer operator in terms of a spherical harmonic basis set. Since the spherical 

harmonics are the eigenvectors of the transfer operator for zero magnetic field, it is 

possible that Auslender's suggestion could prove numerically more efficient or flexible 

than the Gaussian integration approach discussed above for the case of non-zero magnetic 

field. We stress that Auslender has merely suggested this approach; we are here working 

out the details. 

Thus, we first expand the eigenfunctions of Tin terms of spherical harmonics, 

^M=ZC&M*). 026) 
I'M 

Substituting (3.26) into (3.8), we have 

SCO jds>T(s,s%,m,(s') = XXC& YIW(s) (3.27) 
''.«' r.m' 

Then, multiplying (3.27) by Y'm(s) and integrating over s, we obtain 

SCO jdsjds%:m(sy(s,s%w(s>)= XnC\% (3.28) 
l\m' 

We now define the matrix elements, 

T(l,m;l',m') = jjdsds%:m(syr(s,s%w(s'), (3.29) 

in terms of which (3.28) becomes 

ZT(l,m;l',m')d;}=\CM. (3.30) 
I'M 
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For each w=l,2 , (3.30) has the form of a matrix eigenvalue problem. In what follows, 

we will simplify our notation and suppress the index n. As previously, the goal will be to 

obtain the eigenvalues of T, now in a matrix representation given by (3.29). 

The form of (3.30), however, is slightly unusual because the components of the 

eigenvectors are labeled by a double index set. We can cast (3.30) into standard form by 

lining up all of the eigenvector components into a column vector, 

*"0,0 

C 

<v. 
^-2,2 

V.     :     J 

The column vector C is infinite dimensional and the eigenvalue condition becomes a 

matrix eigenvalue equation, T- C = AC, where T is an infinite-dimensional matrix, the 

first few elements of which would be, 

C = (3.31) 

T = 

fj(0,0;0,0) r(0,0;l,l) 7(0,0;1,0) r(0,0;l-l) 7(0,0;2,2) 
r(l,l;0,0)   7(l,l;l,l)   7(l,l;l,0)   r(l,l;l,-l)   r(l,l,2,2)   • 
J(l,0;0,0)   r(l,0;l,l) r(l,0;l,0)   r(l,0;l,-l)   r(l,0;2,2) 
7(l,-l;0,0) r(i,-l;l,l)r(l,-l,l,0)r(l,-l;l,-l) r(l,-l;2,2). 
r(2,2;0,0)   r(2,2;l,l) r(2,2;l,o) r(2,2;l,-l) r(2,2;2,2) 

(3.32) 

We have thus formally reduced the integral eigenvalue equation (3.8) to a matrix 

eigenvalue equation,where, however, the matrix is infinite dimensional. Clearly, some 

practical means of truncating the matrix must be developed. This remains to be done. 

We note that, in principle, the Gaussian integration scheme also produces an infinite 
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matrix to diagonalize. There it was found empirically, that a 16 x 16 matrix produced 

satisfactory results. 

It will be instructive to first evaluate the matrix elements of T for the case of zero 

magnetic field by substituting (3.14) in (3.29) 

T(l,mJ\m') = \ds\dsX^)T(s,s%w{s') 

= ldsjdsr;Js)exP(Ks-s%w(s') 

= 4*Xfh (K^dsjds'Y^Y^ (s^ (s%w(s') (3.33) 

h."<i 

= 4xfl(K)8u.öm,m.. 

Not surprisingly, yet reassuringly, this shows the matrix is diagonal with the zero field 

eigenvalues along the diagonal. 

To incorporate the magnetic field into the matrix construction, either a symmetric 

or a non-symmetric approach is possible. We will explore both avenues, but before 

proceeding, we list the following results that will prove useful in our subsequent analysis. 

The first derives from the addition theorem for Legendre polynomials: 

exp(Zsz) = exp(£cos0)= 4^t^2j + \ /, (Z)F\ 0 (s) .      [Ref. 30 p.445] (3.34) 

We will also require the general integral over three spherical harmonics, 

K^j^^w-^iJ^rarA * *y* * o 
V 4;r ^0    0    0)\mx   m2    m3) 

where 
(II       I   \ l\ l2 *3 

Km\     m2     mzJ 
is the Wigner 3>symbol. [Ref. 31 p63] The Wigner 3/ symbol 

is a symmetric form of the Clebsch-Gordan coefficient that arises frequently in contexts 
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involving coupling of angular momenta in quantum mechanics and other applications of 

the rotation group. The 3j symbols are non-zero only when ml+m2+mi = 0 and the top 

row satisfies a triangle condition, |/, -12 \ < l3 < /, + /2. When the bottom row is 

identically zero, there is an additional rule that the top row must sum to an even integer. 

1.        The Symmetric Kernel 

Since (3.6), the original transfer operator T(s,s') is symmetric, we expect the 

matrix T to be Hermitian. This will ensure that the eigenvalues X are real. Following 

(3.29), we need to evaluate the matrix elements, 

T{l,mJ\m') = \ds\ds%:m{s)T{s,S%m.(s') 

We now substitute in the expansions (3.14) and (3.34), 

exp(^s-s')=4^//(^Km(*:n,(s') and 
l.m 

exp(iZ5z)= ^f^fXLIlWTlY^s). 
1=0 

The expression for the matrix element then becomes, 

r(/,m;/>0 = J&J^T/;m(5)exp(^S.s'+iz(5z
+^)y/>.(5') 

=jdsjdsvd^j:/, (Ky^ (s%^ (s) 
L      h>»h 

V47£/(Z/2y2/T^2>) 
z,=o 

rU*') ■ 

(3.36) 

(3.14) 

(3.34) 
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Collecting terms, we have, 

Employing (3.25), the integral over 3 spherical harmonics and using the fact that 

K,m = (~ VT^i-m >we obtain the ponderous expression, 

T{l,m;V,m')= {AKJ £££ A (*K ^2^21^1 fh t/2 VP^Tl}(-1)" (-1)"» 

'(2l + lX2l1+lX2I2+i)Y>(l  A  l2)(l     I,   l2) 

0 0   0 

(3.37) 

An -m mx 0 

;/(2/,+lX2/,+lX2/f + l)WA  7*  7T 7>    73    7'   ' 
^ 4x )   \p  0   Oj^-w,   0    w', ' 

We can simplify this beast somewhat, 

r(/,m;/',W')=(^)EZZA(^K(^/2K(^/2X2/1 +#2/, +«2/3 + lW(2/+ lX^' + l) 
/l.mi   /2     '3 

7   A   /2Y  /   /,   /2YA    /,   /' 
^0    0     OJ^-TW   7«,   0 J[o     0     0, 

'   \ A   h   1 
ml     0     /w' (-1) 

L/JI+JMJ 

(3.38) 

Utilizing the properties of the 3/ symbol discussed above, we have for the symbols 

appearing in (3.38), 

(ILL 1        *2 
= *. -w   /w,   0 J    ",,m' 

' A   A  r 
^-7»,      0      /«', 

(     I      h      h 
-m   m   0 y 
/ 

= 8„, m, 

/,  /,  n 1 *3 

-w' 0    m' 

We can thus instantly sum over mu (using the fact that Y 8    8    . = 8    .) and the 
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matrix elements become, 

CO      oo        oo 

/,  /2=o ;3=o 

(i   i   /,Y /   /,   /,Y/,   /,   /'Y /,   A   v\ 
\ 

12 '    2 

0   0     0 [-m  m 0 
13 '      3 

K0     0     Ojl^-m     0     wy 

(3.39) 

Equation (3.39) seemingly involves a triple infinite sum. The "triangle" properties of the 

3/ symbols probably restrict some or all of these summations to be finite sums. We will 

not further analyze (3.39) because, as it turns out, a considerably simpler expression for 

the matrix elements can be obtained by working with the asymmetric form of the transfer 

operator (3.7) mentioned in chapter IE, section A. 

2. The Non-Symmetric Kernel 

We now obtain the matrix elements associated with the asymmetric form of the 

transfer operator, T(s, S') = exp[Ks • s' + Lsz). First, however, we note that one might be 

concerned that a non-symmetric kernel would not have real eigenvalues. (Recall, as 

discussed above, that Hilbert-Schmidt theory guarantees that a real symmetric kernel has 

real eigenvalues). In this particular case, however, we can show that the non-symmetric 

kernel is related to the symmetric form of the kernel by a similarity transformation, and 

hence has the same eigenvalues as the symmetric kernel. Consider that the eigenvalue 

equation, (3.8), is equivalent to the following 

\g{sy{s,s')g-'(s')g(s')^^')ds' = Kg(^n(s) (3.8') 

or        Jf(M0?.(*>'= *.?.(*) 

where T(s,s')= g(s)r(s,s')g-l(s')   and      ys„(s)=g(s)Vn(s} 

43 



So long as a function g(s) can be found such that f is symmetric, 7 and T will have the 

same (real) eigenvalues. In our case, it is easy to find the transformation function, 

g(s) = exp(- iyj. Thus, the (3.7) non-symmetric kernels T± (s, s') have the same 

eigenvalues as the (3.6) symmetric T(s,s'). 

Utilizing now T+(s,s') from (3.7), we have from (3.29), 

T(l,m-,l\m') = ^dsdsr;Js)exP(Ks-s'+Ls%m.(s') 

/,,#?!, ;=0 

«KM (3.40) 

= 4^.(rW(2/ ♦ 1X2/' +1)(- l)" £ /,«fo+4'  ''  J] '   'A 
;=o ^0 0   QJ^-m m 0, 

where, in arriving at the last line, we have used the phase convention that 

Km = (~ l)m^,_m • We now utilize the "selection rule" properties of the 3/-symbols: The 

3/-symbols are non-zero only when the sum of the bottom row is zero, and when the 

upper row satisfies the triangle inequality, |/ -1'\ < j < I + V. These two facts: (1) restrict 

the sum over/,and, (2), makes the matrix element diagonal in the variable m: 

n^;/>0=^(-i)^fflm,/r(^(2/+iX2/'+i)|;/y(zX2y+if v H l v J) 

(3.41) 

We note the additional rule for 3>symbols that when the bottom row is all zero, the 

symbol is non-zero only when the upper row sums to an even integer. Thus, the sum 

over/' in (3.41) is further restricted to values such that l+l' + j = 2p, where/? is an 

integer. We note that the fact that T(l,m;l',m') is diagonal in m, makes sense; the 
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azimuthal quantum number remains a good quantum number in the presence of the field. 

Finally, we note that utilizing the other asymmetric form for the kernel 

\T(s, s') = exp{Ks • s'+Ls'z)) merely produces the transpose of T(l,m; I', m'). 

It is easy to verify that the correct zero-field limit results from (3.41). Using the 

fact that f}- (o) = SJfi and the 3/-symbol, 

' l l oW-i)'"" 
-m m 0)    V2/ + 1' 

we obtain the zero-field limit, T(l,m;I',m') = 47tft {K)Slv8mm!as derived previously (3.33). 

One can also show that (3.39) properly reduces to (3.33) in the zero-field limit. 

Using the symmetry properties of the 3/'-symbols, it is simple to show that the 

transpose of T(l,m;V>') is given by, r(/>';/,m) = [/,(l)//,,(l)] T{l,m;l',m'). 

Since we started from an asymmetric version of the transfer operator, it is not surprising 

that T is not symmetric. We note that the transpose relation implies that the matrix 

elements have the symmetry property, /rr(/', m'\ I, m) = f,T(l, m; V, m'). 
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IV.     DISCUSSION 

The purpose of this thesis has been to investigate a method for obtaining the 

thermodynamic partition function for classical Heisenberg spins that interact with 

isotropic nearest-neighbor exchange interactions and which are coupled to an external 

magnetic field. Equation (3.41) is the main result of this thesis. It provides an expression 

for the matrix elements of the transfer operator for classical Heisenberg spins that result 

upon utilizing a basis of spherical harmonic functions. The motivation for pursuing this 

new matrix representation is ultimately to assess its numerical efficiency, as compared 

with Blume's Gaussian quadrature method, in determining the eigenvalues of the transfer 

operator. Within the transfer matrix formalism for calculating the equilibrium properties 

of interacting spins on a lattice, the "matrix" in this case being an operator, the partition 

function is obtained from the eigenvalues of the transfer operator. We emphasize that the 

Gaussian integration method is the only other numerical method available in the physics 

literature of which we are aware for obtaining the eigenvalues of the transfer operator for 

classical Heisenberg spins in an external magnetic field. Moreover, we note that the 

transfer matrix method is the only general method for treating the statistical mechanics of 

interacting spins; there are only a handful of exceptional cases where the partition 

function can be obtained directly, without recourse to the transfer-matrix method. 

As discussed in the introduction, great progress is being made in the ability to 

fabricate molecular clusters containing a small number of magnetic ions (e.g., as few as 

four). Recent advances in the fabrication of molecular magnets portend an 

unprecedented ability to control the placement of magnetic moments in molecular 

structures and hence to design and produce nanometer-scale magnetic systems. As 
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molecular magnetic systems continue to be explored for their possible applications, 

robust and reliable numerical methods will be required to model their thermodynamic 

properties. In the past, physicists have explored spin models for their ability to 

characterize phase transitions. Phase transitions and critical phenomena, however, require 

that the "thermodynamic limit" be taken at the end of the calculation, which, for spins on 

a lattice, means that the number of spins in the system becomes infinite, (i.e., N -> oo ). In 

this limit, only the largest eigenvalue of the transfer matrix becomes relevant. We note 

that specialized numerical methods exist for seeking either the smallest or the largest 

eigenvalue of a given matrix. For the development of nanomagnetism, however, we are 

concerned with the opposite limit to that attendant to the study of phase transitions, (i.e., 

here N-^ finite few). To obtain the partition function for systems with just a few magnetic 

atoms, we will require an indefinite number of the transfer matrix eigenvalues and hence 

it is worthwhile to explore new methods for calculating these quantities. We note that the 

number of eigenvalues of the transfer operator is independent of the size of the system. 

In some sense, we have entered an era of "applied statistical physics," and appropriate 

tools are required. 

Without a detailed numerical investigation, it is difficult to assess the utility of 

(3.41) vis-a-vis Gaussian quadrature. We can offer the following observations. First, it is 

exact. Equation (3.41) provides the exact matrix elements of the transfer operator in the 

basis of spherical harmonics, and this fact alone may offer insights. Stated differently, 

the Gaussian integration method is purely numerical, whereas (3.41) is based on an exact 

theoretical expression, which in and of itself may prove useful. Second, one hopes that 

(3.41) will prove advantageous at least for the case of relatively small magnetic fields. 
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Because (3.41) is diagonal for zero magnetic field, (since the spherical harmonics are the 

zero-field eigenfiinctions of the transfer operator), one would expect for non-zero 

magnetic field that the off-diagonal terms would remain relatively small, and, moreover, 

to become progressively smaller as one proceeds away from the diagonal. This follows 

from the properties of the modified spherical Bessel functions in (3.41). These functions 

have the property that they become monotonically smaller as a function of the order for 

fixed values of the argument. In particular, when the value of the order exceeds the value 

of the argument, the value of the function vanishes (approximately) exponentially as an 

increasing function of the order. From (3.41), we see that the lower limit of the 

summation is given by |/ -1'\, i.e., the order of the first (and largest) term in the 

summation is directly given by the distance to diagonal. Hopefully, such considerations 

will prove useful in developing "rules of thumb" for deciding how to truncate the matrix 

for the purpose of numerically obtaining the eigenvalues. In a similar way, we note that 

the number of terms to include along the diagonal is governed by the overall, field- 

independent, modified spherical Bessel function in (3.41) which is a function ofK, the 

dimensionless nearest-neighbor coupling constant. It thus seems likely that with suitable 

numerical experimentation, one can develop practical schemes for truncating the matrix 

for given values of K and L. Finally, a decided advantage of (3.41) is that it provides a 

systematic way for increasing the accuracy of the eigenvalues, if such is desired. It was 

noted in Chapter III that a 16x16 matrix was sufficient to guarantee seven digit accuracy 

with Gaussian integration. It is a feature of Gaussian integration, however, that one 

cannot systematically obtain more accuracy by increasing the number of integration 

points. For numerical reasons, the accuracy of Gaussian integration "saturates" for a 
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relatively small number of integration points. Thus, while seven-digit accuracy is 

commendable, if for some reason one wanted higher accuracy, it could probably not be 

obtained using Gaussian integration. 

As surmised at the outset, only performing the actual calculations will convey 

"the rest of the story". In general, computational efficiency yardsticks, like the means of 

matrix truncation and the ends of convergence results, must of course await actual 

programming and calculation. Application accuracy, as well as flexibility are key factors 

in adjudging the utility of any tool. So it is with models; in this case the efficacy, 

versatility, and robustness of the spherical harmonic representation is yet to be 

determined. Although pragmatic results will remain the preeminent objective, when an 

intrinsically exact and high fidelity model formulation can engender an illustrative 

understanding of the phenomenon examined, this is a welcome bonus. Finally, as for the 

macromolecular magnetic frontier, the nanometer investigation and fabrication 

technologies undoubtedly will encourage a convergence of scientific disciplines. The 

chemist, physicist, and "nanotechnologist" will merge here to both gain an understanding 

and inevitably utilize these ultra-small complexes. 
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